واکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند

Authors

Abstract:

پیش‌بینی تغییرات کشند، به‌دلیل اهمیتی که در برنامه‌ریزی‌های ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدل‌های شبکه‌های عصبی پیش‌خور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیش‌بینی ساعتی تغییرات کشند است. به‌علاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندمتغیره نیز مد نظر قرار گرفته است. برای این منظور داده‌هایساعتی مشاهداتی ایستگاه ساحلی خلیج چابهار در دریای عمان و ایستگاه‌های جزیره کیش و بندر امام خمینی(ره) در سواحل شمالی خلیج فارس در یک بازه 90 روزه مورد استفاده قرار گرفته‌اند. به‌منظور تعیین مقدار وقفه مناسب در مدل‌سازی زمانمند، شیوه خودهمبستگی جزئی به‌کار گرفته شده است. نتایج ارزیابی مدل‌ها بر اساس شاخص‌های ریشه میانگین مجذور خطا و درصد مطلق خطا حاکی از آن‌ است که مدل شبکه عصبی مبتنی بر الگوریتم لونبرگ-مارکوارد بالاترین دقت را در پیش‌بینی تغییرات کشند در هر 3 ایستگاه مطالعاتی دارا است. این الگوریتم به‌طور متوسط به‌میزان 22، 4 و2 درصد دقت پیش‌بینی‌های مدل‌های رگرسیون خطی چندمتغیره، الگوریتم کاهش شیب و شیب مزدوج را بهبود بخشیده است. در نهایت تحلیل خطای مربوط به مجموع باقیمانده‌ها، بیش‌پیش‌بین بودن مدل‌های شبکه عصبی در ایستگاه‌های جزیره کیش و بندر امام خمینی(ره) و کم‌پیش‌بین بودن آن‌ها را در ایستگاه خلیج چابهار را آشکار می‌سازد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی

روش‌های مختلفی جهت اندازه‌گیری کارایی بتن وجود دارد که یکی از متداول‌ترین و معمول‌ترین روش‌ها، آزمایش اسلامپ است. جهت دست‌یابی به مخلوط‌های بتنی با اسلامپ مورد نظر، باید مخلوط‌های مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آن‌ها صورت گیرد. جهت صرفه‌جویی در زمان، هزینه و مصالح بهتر است از روش‌های هوشمندی جهت پیش‌بینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوط‌های بتنی استفاده شود. د...

full text

پیش بینی عملکرد پسته با استفاده از رگرسیون چندمتغیره ی خطی و شبکه عصبی مصنوعی (مطالعه موردی: شهرستان های رفسنجان و انار استان کرمان)

امروزه، مدیریت اصولی اراضی به‏عنوان یک راهکار مهم برای رسیدن به عملکرد بیشتر در واحد سطح و استفاده بهینه از منابع خاک و آب، مورد توجه پژوهشگران، تولیدکنندگان و سیاست­گذاران عرصه کشاورزی قرار گرفته است. پژوهش حاضر با هدف بررسی ارتباط بین عملکرد پسته و عوامل مؤثر بر آن، صورت پذیرفت. بدین منظور، 129 قطعه باغ در مناطق مختلف شهرستآن‌های رفسنجان و انار شناسایی و انتخاب گردید. نمونه­برداری از آب آبیار...

full text

کارایی شبکه های عصبی، رگرسیون لجستیک و تحلیل تمایزی در پیش بینی نکول

مدل­ های آماری مختلفی برای پیش بینی و طبقه بندی در علوم وجود دارد.  روش ­های آماری و اقتصادسنجی نظیر رگرسیون، تحلیل تمایزی، سری ­های زمانی، رده بندی و دیگر  روش ­ها، بر اساس متغیرها و اطلاعات موجود برای پیش بینی و طبقه بندی یک موضوع خاص به کار می­ روند.  مدل ­های آماری متأثر از مفروضات و محدودیت­ های زیادی هستند، بدین لحاظ اخیرا شبکه­ های عصبی به عنوان شیوه­ ی نوین پیش بینی به دلیل عدم نیاز به ...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

مقایسه کاربرد روش های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل مؤلفه های اصلی برای پیش بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران

هدف از این مقاله، پیش بینی میانگین غلظت روزانه کربن مونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (pca) است. از روش pca برای از بین بردن هم راستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی feed-forward با یک لایه پنهان نیز مدل مناسب برای این ام...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 13

pages  1- 10

publication date 2013-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023